Anomaly-based Intrusion Detection Using Deep Neural Networks
Fahimeh Farahnakian, Jukka Heikkonen

Figure 4. Effect of numbers of corruption level on the performance of SDAEs

5.1. Dataset description

The KDD-CUP'99 dataset [15] is a common benchmark for evaluation of network intrusion detection systems. The data
consists of about 4 GB of compressed raw tcpdump data of network traffic for seven weeks [31]. Each instance of the dataset
has 41 features which are described various aspects of the traffic pattern in a specific time interval. Those features consist of
38 continuous or discrete numerical features and 3 categorical features. It is common practice to use 10% of the original data

as a training dataset since this dataset can represent the original KDD-CUP'99 data and allow for reduced computation [18].
10% of the original KDD-CUP'99 dataset contains 494,021 instances. For evaluating the trained model, we used the standard
test dataset containing 311,029 instances with corrected labels. Each instance is labeled as either normal or as an attack with
exactly one attack type among of four classes. Originally, there are 40 different attacks that are categorized into four main
attack classes as follows:
Denial of Service (DoS): is an attack in which an attacker attempts to prevent legitimate users access to a machine
or make a memory or some computing resources too busy for handling legitimate requests.

User to Root (U2R): is an attack in which an attacker access to the system by a normal user account and then exploits
some vulnerability to gain root access to the system.
Remote to Local (R2L): is an attack in which an attacker sends packets to a machine on the network without any
accounts on that machine and is able to exploits some vulnerability to gain local access as a user of that machine.
Probing (Probe): is an attack in which an attacker collects information about networks or target host for the apparent
purpose of circumventing its security controls.
Table 1 shows the number of instances for both normal and four attack classes in training and test datasets.
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Table 1: Number of instances of each class in both training and test datasets

Dataset Normal DoS U2R | R2L Probe Total
Training | 97,278 391,458 | 52 1,126 | 4,107 494,021
Test 60,593 229,854 | 70 16,347 | 4,166 311,029

5.2. Pre-processing

The following pre-processing steps were performed on the KDD-CUP'99 training and test datasets:
(1) Feature Numeralization: the symbolic features (protocol type, services and flag) are mapped to numerical features by
binary coding [35]. For example, tcp, udp and icmp protocols are mapped to (1,0,0), (0,1,0) and (0,0,1), respectively.
Similarity, the 'flag' feature with 11 values and 'services' feature with 65 values can be mapped to numerical features.
Therefore, 41 original features are finally numeralized to 117 features.
(2) Class Numeralization: the non-numerical attack types are converted into the numeric categories. We used one hot
encoding to convert five categorical classes into five binary classes, with only one active.
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Figure 5. Effect of numbers of hidden layers and hidden units on the performance of MLP, DBN, SAEs, SDAEs and Ladder

(3) Feature Normalization: the numeric features must be normalized for removing the effect of original feature value scales.
All numeric features values are ranged between 0 and 1.

(4) Redundancies reduction: one of the main problems of the data is a large number of duplicate records in both training
and testing datasets that lead to the bias towards more frequent records. Therefore, the data should be cleaned as there are lots
of redundancies in the dataset. To solve this problem, we removed all duplicate records in the training and test datasets and
kept only one copy of each record. After redundancies reduction, the training and test datasets consist of 145,586 and 77,291
instances, respectively.

5.3. Effect of corruption level

We investigated the influence of the input corruption on SDAEs performance. We added a stochastic corruption step
operating on the input. The stochastic process randomly sets some of the inputs to zero. Then our model is trying to predict
the corrupted values from the uncorrupted values for randomly selected subsets of missing inputs. The corruption level ¢/%
means c/ percentage of input values randomly are assigned to zero. Figure 4 shows that the test accuracy of SDAE in different
corruption level from 0% to 85%. Note 0% corruption corresponds to SAEs (regular stacked autoencoders).

The results show that SDAEs appear to perform better that SAEs for a rather wide range of noise levels, regardless of the
number of hidden layers. Moreover, SDAEs obtained the high detection accuracy when the corruption level is 50%.

5.4. Choice of hyperparameters

Designing an efficient model involves a challenging problem called hyper-parameters optimization. The performance of
the model is changed depending on the value of hyper-parameters. In order to tune the hyperparameters for all models in this
paper, we randomly split the 145,586 training instances into al4,000-instance validation dataset and used 131,586 instances
as the training dataset. We used the training dataset for training a model and the validation dataset for validation of the model.
After the best value of hyperparameters is selected, the final model is trained with all 145,586 instances.

The performance of neural networks highly depends on the network topology. The neural network topology represents the
breadth (number of neurons per layer) and depth (number of layers) of the network. For this reason, we tried to find the
network topology that is optimal to intrusion detection. The proposed neural network takes the input from the training dataset.
Therefore, the input layer of networks represents all 117 features of the KDD-CUP99 dataset. The output layer represents five
available classes of the KDD-CUP99 dataset. The number of hidden layers varied from one to five with 32, 64 and 100
neurons at each layer.
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Table 2. List of hyper-parameters for shallow learning architecture

Model Hyperparameter Best value
number of neighbors 50
K-NN the algorithm used to compute the nearest neighbor ball tree
leaf size 500
DT the maximum depth of the tree 500
SVM kernel type rbf
penalty parameter 1.0
learning rate 0.001
AdaBoost the maximum number of estimators 50
Random Forest the maximum depth of the tree 11000
the number of trees in the forest 10
{Forest max number of instances 145586
the number of base estimators in the ensemble 100
hidden layer size 32
MLP actl_vajuon function Relu
optimizer Adam
learning rate 0.001

Figure 5 shows the test classification accuracy of the proposed deep models for the different number of hidden layers and
units. As you can see in Figure 5, a higher number of hidden layers or units not necessarily improves the model accuracy. The
SDAEs model with four hidden layers and 64 hidden units at each layer is best to other deep networks giving 96.85% testing
accuracy for intrusion detection. The MLP model with five hidden layers and 100 units in each layer can get high accuracy
(93.70%). The highest accuracy of DBN and SAE are 94.20% and 94.71% with three number of hidden layers and 64 units,
respectively. The Ladder can also produce 93.62% classification accuracy when the network has four hidden layers and 64
units.

We consider four different network training strategies: without any pre-training (such as MLP and Ladder), with pre-
training (such as DBN), with ordinary autoencoders pre-training (such as SAEs) and with denoising autoencoder pre-training
(such as SDAEs). We clearly see that unsupervised pre-training gives substantially higher test classification accuracy than
no pre-training for the same depth (Figure 5). Figure 5 shows that denoising pre-training being better than autoencoder pre-
training. Moreover, the autoencoder pre-training being better than no pre-training. This result is a typical illustration of what
is gained by pre-training deep networks with a good unsupervised criterion.

Optimization of shallow models was performed over key hyper-parameters and their values are given in Table 2. List of
hyper-parameters for shallow learning architecture. Our proposed SDAEs-based deep architecture achieves the best result of
accuracy when batch size and epochs of pre-training are 100 and 150, respectively. Moreover, the model got the highest
accuracy with 100 batch size and 100 epochs of fine-tuning. There are a lot of choices to select activation functions in the
hidden and output layers. We choose the Sigmoid function for the hidden layer in this work based on a series of preliminary
experiments. In addition, the best optimizer for our neural network model in order to learn properly and tune the internal
parameter is Adam based on our experiments. We also tune the learning rate parameter that is used in Adam with the grid
search. Learning rate controls the speed of weight updating at the end of each batch. We tried a suite small standard learning
rate from 0.001 to 0.3 in steps of 0.1. The best value for the learning rate is 0.001. In MLP, we explore the effect of dropout
on the proposed model. The value of the dropout ranges from 0.0 to 0.9. We see that as dropout is 0.5, the model can get
better accuracy.

5.5 Comparison with shallow and deep learning architectures

In order to design an efficient intrusion detection system performance, the system was trained and evaluated to classify
five different attacks using shallow and deep learning architectures. Eight first rows of Table 3 shows the accuracy of shallow
learning architecture. Maximum test classification accuracy was achieved at 92.33% for K-Nearest Neighbor (K-NN),
followed by 93.74% for CART decision tree, 92.86% for Support Vector Machine (SVM), 87.95% for AdaBoost, 92.32% for
Random Forest, 90.89% for iForest, 93.17% for Multi-Layer Perceptron (MLP) and 93.13% for AutoEncoder (AE). The two
best performing classifiers were CART and MLP, respectively. Although none of these shallow learning architecture’s
performance was as high as Stacked Deionising AutoEncoders (SDAEs). In addition, Table 3 shows the classification
accuracy of SDAEs-IDS in comparison to the other deep architectures: Multi-Layer Perceptron (MLP), Deep Belief Network
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(DBN), Stacked AutoEncoder (SAEs) and Ladder [30], AutoEncoder+DBN'* ' [18] and DBN* [22]. MLP is tested with and

without dropout to investigate how dropout can affect on the accuracy.
Table 3. Comparison of Stacked Denoising AutoEnocders (SDAEs) with shallow and deep learning architectures

Model Test classification accuracy(%)
K-NN 92.36
CART 93.74
SVM 92.86
AdaBoost 87.95
Random Forest 92.32
iForest 90.89
MLP 93.17
AE 93.13
MLP with dropout 93.70
MLP without dropout 93.28
SAEs 94.71
DBN 94.20
Ladder [33] 93.62
AutoEncoder+DBN'’1? [19] 92.10
DBN* [23] 93.49
SDAEs 96.85

Results show that the accuracy of MLP is improved by considering dropout as it can avoid overfitting. The best
performance is achieved by Stacked Denoising AutoEncoder (SDAEs) among the proposed deep models as shown in Table
3. The representation ability of shallow learning architecture or neural network is limited in comparison to the deep neural
networks. Another reason for achieving the better accuracy by SDAEs is a denoising task. SDAEs is forced to discover more
robust features when is reconstructed the input from a corrupted version of it.

6. Conclusion

We have introduced a deep neural network architecture for improving the performance of anomaly-based intrusion
detection systems. Our architecture used Stacked Denoising AutoEncoders (SDAEs) that is formed by stacking several
autoencoders to improve the representation capability of learned features from training data. To the best of our knowledge,
currently there are no existing works on using SDAEs to detect intrusions in networks. SDAEs can extract robust features by
reconstructing the data from the corrupted version of it. Moreover, the proposed architecture is designed to perform first
unsupervised pre-training and then followed by supervised fine-tuning for intrusion detection.

A series of experiments were performed to evaluate the proposed architecture on the KDD-CUP'99 dataset. The empirical
results support the following conclusions: unsupervised pre-training gives substantially higher test classification accuracy
than no pre-training. Denoising pre-training being better than autoencoder pre-training. Our SDAEs-based architecture can
produce a high accuracy compared with other deep architectures and shallow learning architectures for intrusion detection.
We also presented a series of experiments aimed at evaluating the link between the performance of our deep neural network
architecture and aspects of their topology such as depth and breadth. Finally, we explored the effect of corruption levels on
the proposed architecture performance. Overall the results should have a wide interest in the IDS community.
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